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Abstract

Many help systems provide assistance independent of theifsucurrent situation. However,
there are good reasons that two users in different situattiould be assisted differently while
dealing with the same problem. We describe a decision-#tiegslanning approach by which an
adaptive help system can determine its dialog strategy ¢ordance to the user’s current needs.
These needs, e.g. the need for a rather comprehensive drea cancise sequence of instructions,
can be derived from a user model. We show how information fteenuser model can be used
to parameterize the decision-theoretic planning procedstaerewith to generate dialog strategies
adaptively.
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1 Introduction

PassengeP'’s flight is delayed. His business partner is going to pick hipat the airport,
thereforeP wants to make a phone call to inform him about his late arrit#d finds a phone
which operates on credit card. As he has never used a credipb@ane before, he consults
his mobile airport assistance systéimrunning on his PDA. The help system instrugtstep

by step how to operate the phorf findsS's comprehensive instructions very convenient and
follows them without problems.

Passenge@ arrives late at the airport. After he overslept in the magnime hurried out of
the house and forgot to turn off the coffee machine. Thergumtea few minutes remaining
before the boarding, but a3 fears a fire in his flat, he desperately wants to call his neighb
before departure. The only phog2 can find works on credit card—and just lil& Q has
never used a credit card phone before. His mobile airpotasee system adapts to his needs.
S presents him the information needed to operate the phoneancse way: it gives several
simple instructions in one turn, but at the same time seermmarabout not to overload with
information. @ remains concentrated. He makes his call quickly and laterires the gate just
in time.



Unlike e.g. [8], who employs terminological reasoning fbe tgeneration of user-adapted
plans, or [7], who considers resources within the clasgtaining paradigm, this article de-
scribes howsS’s adaptive behavior described above can be achieved by sredatecision-
theoretic planning We show how the dialog between a useand a systen$ can be modeled
asMarkov decision process (MDPF)lustrate the system behavior with the example of opegati
a credit card phone and discuss possible enhancemesits aflaptive behavior not included in
the current implementation. To describe h&'s adaptive behavior relates to the user model,
we show how information aboutme_pressureand cognitiveload derived from a user model
can be used to parameterize the decision-theoretic plgmmocess.

2 Background

[1] describes in detail how the decision-theoretic plagrapproach can be applied in an ab-
stract situation referring to an experimental environrhantoduced in [5]. The article shows
how empirical dataderived from the experiment (the probabilitiesiolexecuting instructions
correctly and the instruction costs in terms of the time ketd/ to execute instructions) are
used to determin&’s instruction strategy (or in terms of decision-theorgii@nning:instruc-
tion policy). On the one hand§ is supposed to give the instructions comprehensive enaugh t
makel/ execute them correctly, on the other haSdhould avoid to take unnecessarily long to
instruct/. In other words is supposed to achieve a trade-off between a very fast but-err
prone interaction and a slower but almost certainly corrgetraction. For this purposé, has
the possibilities to give the instructions step by step ayrtmup several instructions in bundles
of 2, 3 or 4 instructions.

Some examples of interesting applications for the decithieoretic computation of inter-
action strategies are already mentioned in [1]. While [1d §] emphasize the applicability
of the decision-theoretic approach for human-computeraation in principle and based on
empirical data, the focus of this article is the integratiddecision-theoretic planning and user
modeling explained with a concrete example in an airponaie.

3 Adaptive assistance for using a credit card phone

Operating a credit card phone requires a sequence of adarisig with keeping the credit
card ready and lifting the handset, then dialing some preany digits before entering credit
card information and eventually dialing the desired numiSezould use the eight instructions
listed in Table 1 to assi$f during the operating process. However, as the introducttied to
demonstrate, neither giving all of these instructions stepteg, nor giving all of them in one
turn seems to be the appropriate strategy in all situatioissead S should give the instructions
in the most convenient way fdd’s situation at hand, i.e. it should select the bundling of

We do not repeat the details of the experiment as it has alteaeh described in both [1] and [5].

2As S is an external help system (a system not integrated in theeléw operate)l/ has to give feedback
each time he has finished an instruction—but giving feedbeicks time and is annoying if required unnecessarily
often.



Table 1: Instructions for operating a credit card phone

1. "Keep your credit card ready!”

2. "Lift handset!”

3. "Dial 0"

4. "After the tone, dial 9!”

5. "After the tone, enter your credit card number!”
6. "Enter two digits for the month of the expiring date)”
7. "Enter two digits for the year of the expiring date!”
8. "After the tone, dial the desired number!”

instructions promising thenaximum expected utilifpr Z/. This can be achieved by modeling
the dialog as Markov decision process (see e.g. [11, 4] fonzey).

3.1 Modeling as Markov decision process

A Markov decision process models the stages of a dialog leetWweindl/ as states connected
by stochastic transitions. The transitions describe tlstesy dynamics induced by bo#is
andi/(’s actions. A decision process is callgthrkov/Markovian(or is said to meet th®arkov
property), if for all states, the transitions from one state to anotteenot depend on the state’s
history, but only on the state itself. To describe the sysdigmamics of the instruction process,
i.e. the interaction betwee$i andl{/, we need to define the features of the states and how they
are changed by following the transitions for correspondiaiions. Figure 1 illustrates how we
construct the MDP for the interaction betwegm@mandi/.

Each state consists of 4 features: {ly0_GIVE—the number of instructionsS still has to
give, (2)N_IN_BUNDLE—the current length of the instruction bundle, (8)N_wM—the num-
ber of instructiong/ currently keeps in working memory and (dpRRECTPERFORMANCE?
—the information ifi/ has avoided making any errors so far. The acGoVE_INSTRUCTION
generates a transition leading to a successor state in which GIVE is decreased by 1, while
N_IN_BUNDLE andN_IN_WM are increased by 1. Ilif has avoided making any errors so far,
the actionwAIT _FOR.EXECUTION generates transitions to two successor states. In both suc-
cessor states_IN_WM is decreased by 1, moreoveriN_BUNDLE is set to O, iff at the same
time N_IN_wWM is decreased from 1 to 0. The successor states only différarieaturecor-
RECT_PERFORMANCE? One state is reached with probability,,...; (the probability that/ ex-
ecutes the instruction correctly), the other with,,, = 1 — peorrect- From a state in which the
featureCORRECT. PERFORMANCE? is already negativayAlT _FOR.EXECUTION leads to the
successor state in whicdtORRECT PERFORMANCE? is negative with probability.,,., = 1.
The transitions for both actior&@VE_INSTRUCTION andwAIT _FOR_.EXECUTION are annotated
with costs—the time it takeS to give an instruction ai to execute an instruction, respectively.

We make the following basic assumption, which is underginnethe empirical data of the
experimental study: the probability thatexecutes an instruction incorrectly depends signif-
icantly on how long/ had to memorize the instruction before executing it. Tosiitate this:

a person who has never used a credit card phone before, antswhesented the complete
sequence of eight instructions in one turn, might easilgdobrla step during the execution or
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Figure 1: Construction of the MDP modeling the interactietweenS andi/

execute instructions in the wrong order. Moreover, somassaee inherently more error-prone
than others, and some take longer execution time than ofbays dialing a single digit vs.
entering a complete credit card number). Such instructepeddent differences in the proba-
bilities and costs are not taken into account in the modeheexperimental scenario described
in [1], as all instructions in the experiment had similar gexity.

3.2 Parameterization by the user model

Our overall goal is to make the system adapt its behavidf'sacurrent situation, i.e. to make
the system behavior dependent on the user model, whiotaintains during the interaction
with /. A common technique used to model a userBagesian networkgd 2]. Two variables,
which have major influence on how information should be presgbtol/, areTIME_PRESSURE
andCOGNITIVE_LOAD [13]. Inference concerning these variables can currerglgifawn both
from symptoms occurring during speech input [10] (e.g. catétion rate, distractions, filled
and unfilled pauses etc.) and symptoms occurring during edamout [9] (e.g. scrolling speed,
tapping close to an icon, hard or soft tapping on the disptay).e In the near future, also
information gained by bio-sensors (e.g. pulse rate, seréergy of the skin, blood pressure
etc.) will be considered. The question is—if we have estiomstofl{'s TIME_PRESSUREand
COGNITIVE_LOAD—how should they influence the planning process, and hercestulting

dialog strategy?

If ¢ is under time pressure; should clearly present instructions concisely, i&should
rather choose bigger bundles and relylémo memorize and execute them correctly. In terms



of the dialog modeled as MDP, this means that the importahmsaching a goal state in which
U will have avoided to make any error, is rather low. Low importe of reaching an error-
free goal state corresponds to assigning a rather low retoatioe goal states. Accordingly,
assigning higher reward to the goal states means attacighgihimportance téf following the
instructions error-free. And in fact higher rewards yieldldg strategies using small bundles
or giving instructions step by step. Therefore, the rewradssigned to the goal states of the
MDP can be determined according to the formula:

R = Rjpptime_pressure + Rpyign(1 — time_pressure) (1)

with time_pressure € [0, 1] corresponding to the variabtemMe _PRESSUREOf the Bayesian
network, andR,,.,, R, appropriate values for low and high rewards of goal statespec-
tively.

If 4 shows symptoms of cognitive load, he is more likely to exeaostructions incorrectly
than if he would be fully concentrated. This mea0SGNITIVE_LOAD directly influences the
probabilities assigned to the transitions of the MDP. If pnebability that/ executes instruc-
tions correctly equaled 1 no matter what the bundling siz8 uld always choose the biggest
bundling size: this would promise the lowest cost in term&é needed to execute the instruc-
tions and to give feedback. But, as we said before, the siteedfundle matters. Therefore, we
assume that the probability tHdtexecutes an instruction correctly depends on both how#bng
had to memorize the instruction (i.e. the instruction’sipos in a bundle) and{’s current cog-
nitive load. In fact, this is also underpinned by the empiratata derived from the experiment
mentioned in section 2: subjects who are distracted by anslecy task are more likely to ex-
ecute an instruction incorrectly than others. This can Imensarized by the following formula
for U’s probabilityp; ,, to execute théth instruction in a bundle of size incorrectly:

Pin = Pinjow(1 — cognitive_load) + p; n nigncognitive_load (2)

with cognitive_load € [0, 1] corresponding to the variab8OGNITIVE_LOAD of the Bayesian
network, p; » 10 aNdp; » 1ign @ppropriate values for error probabilitiegifs cognitive load is
low or high, respectively.

3.3 System behavior

We have integrated and tested the approach described abayeatotypical airport assistance
system, which allows the specification of symptoms for timespure and cognitive load occur-
ring during{’s interaction withS. In its start configuration, |e§ expect a probability of.5 for
both variablesIME_PRESSUREaNdCOGNITIVE_LOAD. S’s instruction policy for this config-
uration is to give the first four instructions in pairs. Catesithen the following three possible
progressions of the interaction: ()speaks with average speed and shows symptoms such as
distractions or filled pauses in his speech.increases its expectation fGOGNITIVE_LOAD
while its expectation forIME_PRESSUREremains nearly constant. Aftéf has executed the
first two instruction pairsS changes its instruction policy and gives the remaining fositruc-
tions step by step. (2) speaks very quickly, yet, does not show symptoms such asclisins
or filled pauses in his speech.increases its expectation forME_PRESSUREand at the same



time decreases its expectation fooGNITIVE_LOAD. After ¢/ has executed the first two in-
struction pairsS changes its instruction policy and gives the remaining fostructions all in
one turn. (3)4 speaks very quick and show symptoms such as distractionistoaations or
filled pauses in his speech.increases its expectations for bativeE _PRESSUREandCOGNI-
TIVE_LOAD. After U has executed the first two instruction paifssticks with its instruction
policy an gives the remaining four instructions in pairs a&tlw

These are only three examples of how changes in the user nmideinceS’s instruction
strategy. Yet,S can adapt its instruction strategy to any given user modefigaration in
this way. This yields a much more precise mapping from usetehconfigurations to dialog
strategies than e.g. using threshold values and a simpigialetree.

3.4 Variations and enhancements

Initially, we assumed thaf plans the complete sequence of eight instructions in ome tiwe

do not expect any user to be able to memorize and follow dfiteigstructions correctly in one
turn, then it is reasonable to partition the instructionussge. A reasonable partition for the
eight instructions at hand is to consider two sets of fourircsions—as we did in the previous
section. Apart from complexity reasons, partitioning thstiuction sequence has another ad-
vantage: to plan the second set of instructighsan consider symptoms for time pressure and
cognitive load whicli/ showed during the execution of the first set. Other partitidependent

of the total number of instructions or relations of contembag each other, are possible.

So far,S only determines the bundling sizes for a fixed sequence afrectAllowing S to
decide if an instruction can be omitted completely, is aoaable variation of adaptivity. E.qg.
the instruction “Lift handset!” can probably often be lettdor a user under time pressure with-
out posing a problem. Althougtt could lift the handset at the wrong stage of the interaction,
U would at least lift the handset at some point—and with eelittlck, it might just be the right
one. For the MDP this means, that the states with the transitor “Lift handset!” additionally
gets transitions for “Dial 0”, which skip the states in whitle “Lift handset!”-transitions end.
Obviously, the cost of the interaction is reduced by skigghe “Lift handset!”-transition, but
the probability to reach the next state error-free is rediaewell. Clearly, this enhancement
fits well into the decision-theoretic model.

The augmentation of the dialog with different presentatiades is the last enhancement to
be discussed. Consider e.g. the instruction “Enter twdsligr the month of the expiring date!”
S can present the content of this instruction in a very dedaitgsion (e.g. “There is an expiring
date indicated on your credit card. It is written like thissfithere are two digits for the month,
then there is a slash, and then there are another two digitsfgear. Please enter the two digits
for the month!”) or it could choose a short version (e.g. ‘&rexpiring date: month!”). In[2, 3]

a similar approach using different presentation modespsiexpfor the planning of navigation
recommendations. In fact, an instruction policy can be clamed as a means to hdlpto
navigate through the stages of a dialog. In the MDP, additipresentation modes are mirrored
by additional transitions between the states. Obvioulsérg are different costs fdf giving an
instruction and different probabilities fé¢ executing an instruction correctly associated with
different presentation modes. As in the case of omittingrircsions, this enhancement fits well
into the decision-theoretic model.



4 Discussion

We tried to motivate the application of decision-theorptanning for the achievement of adap-
tive behavior of a help system in terms of its dialog strateygoncrete example was chosen
to illustrate the added value of the adaptive behavior. €8ke those of passeng@r and Q

in the introduction can properly be dealt with, as we expergel when applying the approach
in the prototypical airport assistance system of the ptdgEeADY?3, Yet, it is also a matter of
fine tuning the system to achieve the desired system behaitluin the complete spectrum of
situations, which can occur. This problem amplifies, as wddcaot use empirically derived
or learned probabilities for the scenario, but had to usenasts. Learning these probabili-
ties would clearly be a neat but also costly procedure torgidhie decision-theoretic planning
approach.

A very concrete problem occurred, when we tried to enhaneetbdeling by allowing the
system to repeat instructions, if the user has not undedsiooould not execute an instruction
correctly. Althoughitis not a problem to enhance the MDFhahat it can deal with repetitions,
the question is: how should the system as a whole react toksndtof feedback? Although the
instruction policy would in principle be able to repeat mstions, the fact that/ is not able
to follow the instructions as determined by the currentgpoindicates, thatS should rather
recompute the complete policy with adjusted parameters fh® user model. It is still an open
guestion what the best strategy in such situations might be.
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